- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Morrow, Jackson S (2)
-
Achenjang, Niven T (1)
-
Derickx, Maarten (1)
-
Etropolski, Anastassia (1)
-
Howe, Sean (1)
-
Morrow, Jackson S. (1)
-
Wear, Peter (1)
-
Zureick-Brown, David. (1)
-
van Hoeij, Mark (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Achenjang, Niven T; Morrow, Jackson S (, International Mathematics Research Notices)Abstract We study integral points on varieties with infinite étale fundamental groups. More precisely, for a number field $$F$$ and $X/F$ a smooth projective variety, we prove that for any geometrically Galois cover $$\varphi \colon Y \to X$$ of degree at least $$2\dim (X)^{2}$$, there exists an ample line bundle $$\mathscr{L}$$ on $$Y$$ such that for a general member $$D$$ of the complete linear system $$|\mathscr{L}|$$, $$D$$ is geometrically irreducible and any set of $$\varphi (D)$$-integral points on $$X$$ is finite. We apply this result to varieties with infinite étale fundamental group to give new examples of irreducible, ample divisors on varieties for which finiteness of integral points is provable.more » « less
-
Derickx, Maarten; Etropolski, Anastassia; van Hoeij, Mark; Morrow, Jackson S.; Zureick-Brown, David. (, Algebra and number theory)Let K be a number field, and let E/K be an elliptic curve over K. The Mordell–Weil theorem asserts that the K-rational points E(K) of E form a finitely generated abelian group. In this work, we complete the classification of the finite groups which appear as the torsion subgroup of E ( K ) for K a cubic number field. To do so, we determine the cubic points on the modular curves X1(N) for N = 21,22,24,25,26,28,30,32,33,35,36,39,45,65,121. As part of our analysis, we determine the complete lists of N for which J0(N), J1(N), and J1(2,2N) have rank 0. We also provide evidence to a generalized version of a conjecture of Conrad, Edixhoven, and Stein by proving that the torsion on J1(N)(Q) is generated by Galois-orbits of cusps of X1(N) for N ≤55, N ̸=54.more » « less
An official website of the United States government
